Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: effects of red blood cells' orientation on light scattering.
نویسندگان
چکیده
Optical properties of flowing blood were analyzed using a photon-cell interactive Monte Carlo (pciMC) model with the physical properties of the flowing red blood cells (RBCs) such as cell size, shape, refractive index, distribution, and orientation as the parameters. The scattering of light by flowing blood at the He-Ne laser wavelength of 632.8 nm was significantly affected by the shear rate. The light was scattered more in the direction of flow as the flow rate increased. Therefore, the light intensity transmitted forward in the direction perpendicular to flow axis decreased. The pciMC model can duplicate the changes in the photon propagation due to moving RBCs with various orientations. The resulting RBC's orientation that best simulated the experimental results was with their long axis perpendicular to the direction of blood flow. Moreover, the scattering probability was dependent on the orientation of the RBCs. Finally, the pciMC code was used to predict the hematocrit of flowing blood with accuracy of approximately 1.0 HCT%. The photon-cell interactive Monte Carlo (pciMC) model can provide optical properties of flowing blood and will facilitate the development of the non-invasive monitoring of blood in extra corporeal circulatory systems.
منابع مشابه
measuring viscoelastic properties of Red Blood Cell using optical tweezers
Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...
متن کاملStudy of Radiation Dose Enhancement to Capillary Endothelial Cells Due to the Presence of Heavy Metal Nanoparticles in Two Cell and Tumor Scales by Monte Carlo Method
Introduction: Recently, the use of various sensitizers has been used to increase photon-induced doses in brachytherapy. One of these cases is the addition of heavy metal nanoparticles such as gold in the target area, which increases the production of ionizing electrons by increasing the possibility of photoelectric effects, and increases the efficacy of the treatment. In this study, the target ...
متن کاملDesign of Light Multi-layered Shields for Use in Diagnostic Radiology and Nuclear Medicine via MCNP5 Monte Carlo Code
Introduction Lead-based shields are the most widely used attenuators in X-ray and gamma ray fields. The heavy weight, toxicity and corrosion of lead have led researchers towards the development of non-lead shields. Materials and Methods The purpose of this study was to design multi-layered shields for protection against X-rays and gamma rays in diagnostic radiology and nuclear medicine. In this...
متن کاملEngineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کاملStudy of cancer cells response row K562 to Low-Dose- Beta irradiation and determination of absorbed dose using Monte Carlo method
Introduction: Cancer is, in essence, a genetic disease and is the second leading cause of death globally. Fortunately, many common types of cancer are treatable if detected early and of course there are many medications and treatments available today. Among the new methods to treat cancer, radiotherapy seems to be hopeful in patients with malignancies. This work investigates th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2012